Polynomial Upper Bounds on the Number of Differing Columns of Δ-Modular Integer Programs

Author:

Lee Jon1,Paat Joseph2ORCID,Stallknecht Ingo3,Xu Luze1

Affiliation:

1. Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan 48109;

2. Sauder School of Business, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada;

3. Department of Mathematics, Eidgenossische Technische Hochschule Zurich, 8092 Zurich, Switzerland

Abstract

We study integer-valued matrices with bounded determinants. Such matrices appear in the theory of integer programs (IPs) with bounded determinants. For example, an IP can be solved in strongly polynomial time if the constraint matrix is bimodular: that is, the determinants are bounded in absolute value by two. Determinants are also used to bound the [Formula: see text] distance between IP solutions and solutions of its linear relaxation. One of the first to quantify the complexity of IPs with bounded determinants was Heller, who identified the maximum number of differing columns in a totally unimodular matrix. Each extension of Heller’s bound to general determinants has been superpolynomial in the determinants or the number of equations. We provide the first column bound that is polynomial in both values. For integer programs with box constraints, our result gives the first [Formula: see text] distance bound that is polynomial in the determinants and the number of equations. Our result can also be used to derive a bound on the height of Graver basis elements that is polynomial in the determinants and the number of equations. Furthermore, we show a tight bound on the number of differing columns in a bimodular matrix; this is the first tight bound since Heller. Our analysis reveals combinatorial properties of bimodular IPs that may be of independent interest. Funding: J. Lee was supported in part by the Office of Naval Research [Grant N00014-21-1-2135] and the Air Force Office of Scientific Research [Grant FA9550-19-1-0175]. J. Paat was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant [Grant RGPIN-2021-02475].

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Computer Science Applications,General Mathematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3