Empirical Evaluation of Approximation Algorithms for Generalized Graph Coloring and Uniform Quasi-wideness

Author:

Nadara Wojciech1,Pilipczuk Marcin1,Rabinovich Roman2,Reidl Felix3,Siebertz Sebastian4

Affiliation:

1. Institute of Informatics, University of Warsaw, Poland

2. Lehrstuhl für Logic und Semantik, Technische Universität Berlin, Germany

3. Department of Computer Science, Royal Holloway University of London, United Kingdom

4. University of Bremen, Bremen, Germany

Abstract

The notions of bounded expansion and nowhere denseness not only offer robust and general definitions of uniform sparseness of graphs, they also describe the tractability boundary for several important algorithmic questions. In this article, we study two structural properties of these graph classes that are of particular importance in this context: the property of having bounded generalized coloring numbers and the property of being uniformly quasi-wide . We provide experimental evaluations of several algorithms that approximate these parameters on real-world graphs. On the theoretical side, we provide a new algorithm for uniform quasi-wideness with polynomial size guarantees in graph classes of bounded expansion and show a lower bound indicating that the guarantees of this algorithm are close to optimal in graph classes with fixed excluded minor.

Funder

Marie Skłodowska-Curie

European Research Council

ERC Consolidator Grant DISTRUCT

Recent trends in kernelization: theory and experimental evaluation

European Union's Horizon 2020 research and innovation programme

National Science Centre of Poland via POLONEZ grant

Homing programme of the Foundation for Polish Science

European Union under the European Regional Development Fund

Publisher

Association for Computing Machinery (ACM)

Subject

Theoretical Computer Science

Reference84 articles.

1. [n.d.]. Gephi Datasets. Retrieved from https://github.com/gephi/gephi/wiki/Datasets. [n.d.]. Gephi Datasets. Retrieved from https://github.com/gephi/gephi/wiki/Datasets.

2. [n.d.]. LEDA. Retrieved from http://www.algorithmic-solutions.com/leda/index.htm. [n.d.]. LEDA. Retrieved from http://www.algorithmic-solutions.com/leda/index.htm.

3. 2018. Recent trends in kernelization: Theory and experimental evaluation—project website. Retrieved from http://kernelization-experiments.mimuw.edu.pl. 2018. Recent trends in kernelization: Theory and experimental evaluation—project website. Retrieved from http://kernelization-experiments.mimuw.edu.pl.

4. Distributed Domination on Graph Classes of Bounded Expansion

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3