Bounds on Half Graph Orders in Powers of Sparse Graphs

Author:

Sokołowski Marek

Abstract

Half graphs and their variants, such as semi-ladders and co-matchings, are configurations that encode total orders in graphs. Works by Adler and Adler (Eur. J. Comb.; 2014) and Fabiański et al. (STACS; 2019) prove that in powers of sparse graphs, one cannot find arbitrarily large configurations of this kind. However, these proofs either are non-constructive, or provide only loose upper bounds on the orders of half graphs and semi-ladders.In this work we provide nearly tight asymptotic lower and upper bounds on the maximum order of half graphs, parameterized by the power, in the following classes of sparse graphs: planar graphs, graphs with bounded maximum degree, graphs with bounded pathwidth or treewidth, and graphs excluding a fixed clique as a minor. The most significant part of our work is the upper bound for planar graphs. Here, we employ techniques of structural graph theory to analyze semi-ladders in planar graphs via the notion of cages, which expose a topological structure in semi-ladders. As an essential building block of this proof, we also state and prove a new structural result, yielding a fully polynomial bound on the neighborhood complexity in the class of planar graphs.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neighborhood Complexity of Planar Graphs;Combinatorica;2024-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3