The missing link: explaining ELF static linking, semantically

Author:

Kell Stephen1,Mulligan Dominic P.1,Sewell Peter1

Affiliation:

1. University of Cambridge, UK

Abstract

Beneath the surface, software usually depends on complex linker behaviour to work as intended. Even linking <pre>hello_world.c</pre> is surprisingly involved, and systems software such as <pre>libc</pre> and operating system kernels rely on a host of linker features. But linking is poorly understood by working programmers and has largely been neglected by language researchers. In this paper we survey the many use-cases that linkers support and the poorly specified linker speak by which they are controlled: metadata in object files, command-line options, and linker-script language. We provide the first validated formalisation of a realistic executable and linkable format (ELF), and capture aspects of the Application Binary Interfaces for four mainstream platforms (AArch64, AMD64, Power64, and IA32). Using these, we develop an executable specification of static linking, covering (among other things) enough to link small C programs (we use the example of bzip2) into a correctly running executable. We provide our specification in Lem and Isabelle/HOL forms. This is the first formal specification of mainstream linking. We have used the Isabelle/HOL version to prove a sample correctness property for one case of AMD64 ABI relocation, demonstrating that the specification supports formal proof, and as a first step towards the much more ambitious goal of verified linking. Our work should enable several novel strands of research, including linker-aware verified compilation and program analysis, and better languages for controlling linking.

Funder

Engineering and Physical Sciences Research Council

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A study of inline assembly in solidity smart contracts;Proceedings of the ACM on Programming Languages;2022-10-31

2. The Trusted Computing Base of the CompCert Verified Compiler;Programming Languages and Systems;2022

3. CompCertELF: verified separate compilation of C programs into ELF object files;Proceedings of the ACM on Programming Languages;2020-11-13

4. Guided linking: dynamic linking without the costs;Proceedings of the ACM on Programming Languages;2020-11-13

5. Slimium: Debloating the Chromium Browser with Feature Subsetting;Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security;2020-10-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3