Guided linking: dynamic linking without the costs

Author:

Bartell Sean1ORCID,Dietz Will1ORCID,Adve Vikram S.1ORCID

Affiliation:

1. University of Illinois at Urbana-Champaign, USA

Abstract

Dynamic linking is extremely common in modern software systems, thanks to the flexibility and space savings it offers. However, this flexibility comes at a cost: it’s impossible to perform interprocedural optimizations that involve calls to a dynamic library. The basic problem is that the run-time behavior of the dynamic linker can’t be predicted at compile time, so the compiler can make no assumptions about how such calls will behave. This paper introduces guided linking , a technique for optimizing dynamically linked software when some information about the dynamic linker’s behavior is known in advance. The developer provides an arbitrary set of programs, libraries, and plugins to our tool, along with constraints that limit the possible dynamic linking behavior of the software. By taking advantage of the constraints, our tool enables any existing optimization to be applied across dynamic linking boundaries. For example, the NoOverride constraint can be applied to a function when the developer knows it will never be overridden with a different definition at run time; guided linking then enables the function to be inlined into its callers in other libraries. We also introduce a novel code size optimization that deduplicates identical functions even across different parts of the software set. By applying guided linking to the Python interpreter and its dynamically loaded modules, supplying the constraint that no other programs or modules will be used, we increase speed by an average of 9%. By applying guided linking to a dynamically linked distribution of Clang and LLVM, and using the constraint that no other software will use the LLVM libraries, we can increase speed by 5% and reduce file size by 13%. If we relax the constraint to allow other software to use the LLVM libraries, we can still increase speed by 5% and reduce file size by 5%. If we use guided linking to combine 11 different versions of the Boost library, using minimal constraints, we can reduce the total library size by 57%.

Funder

National Science Foundation

Office of Naval Research

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3