WYSINWYX

Author:

Balakrishnan Gogul1,Reps Thomas2

Affiliation:

1. NEC Laboratories America, Inc., Princeton, NJ

2. University of Wisconsin and GrammaTech, Inc., Ithaca, NY

Abstract

Over the last seven years, we have developed static-analysis methods to recover a good approximation to the variables and dynamically allocated memory objects of a stripped executable, and to track the flow of values through them. The article presents the algorithms that we developed, explains how they are used to recover Intermediate Representations (IRs) from executables that are similar to the IRs that would be available if one started from source code, and describes their application in the context of program understanding and automated bug hunting. Unlike algorithms for analyzing executables that existed prior to our work, the ones presented in this article provide useful information about memory accesses, even in the absence of debugging information. The ideas described in the article are incorporated in a tool for analyzing Intel x86 executables, called CodeSurfer/x86. CodeSurfer/x86 builds a system dependence graph for the program, and provides a GUI for exploring the graph by (i) navigating its edges, and (ii) invoking operations, such as forward slicing, backward slicing, and chopping, to discover how parts of the program can impact other parts. To assess the usefulness of the IRs recovered by CodeSurfer/x86 in the context of automated bug hunting, we built a tool on top of CodeSurfer/x86, called Device-Driver Analyzer for x86 (DDA/x86), which analyzes device-driver executables for bugs. Without the benefit of either source code or symbol-table/debugging information, DDA/x86 was able to find known bugs (that had been discovered previously by source-code analysis tools), along with useful error traces, while having a low false-positive rate. DDA/x86 is the first known application of program analysis/verification techniques to industrial executables.

Funder

National Science Foundation

Division of Computing and Communication Foundations

HSARPA

Air Force Research Laboratory

Office of Naval Research

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 146 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. NativeSummary: Summarizing Native Binary Code for Inter-language Static Analysis of Android Apps;Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis;2024-09-11

2. Define-Use Guided Path Exploration for Better Forced Execution;Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis;2024-09-11

3. Compiling with Abstract Interpretation;Proceedings of the ACM on Programming Languages;2024-06-20

4. Polynima: Practical Hybrid Recompilation for Multithreaded Binaries;Proceedings of the Nineteenth European Conference on Computer Systems;2024-04-22

5. BinVuGAL: Binary vulnerability detection method based on graph neural network combined with assembly language model;Proceedings of the 2024 3rd International Conference on Cryptography, Network Security and Communication Technology;2024-01-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3