Reducing pause times with clustered collection

Author:

Cutler Cody1,Morris Robert1

Affiliation:

1. Massachusetts Institute of Technology, USA

Abstract

Each full garbage collection in a program with millions of objects can pause the program for multiple seconds. Much of this work is typically repeated, as the collector re-traces parts of the object graph that have not changed since the last collection. Clustered Collection reduces full collection pause times by eliminating much of this repeated work. Clustered Collection identifies clusters: regions of the object graph that are reachable from a single "head" object, so that reachability of the head implies reachability of the whole cluster. As long as it is not written, a cluster need not be re-traced by successive full collections. The main design challenge is coping with program writes to clusters while ensuring safe, complete, and fast collections. In some cases program writes require clusters to be dissolved, but in most cases Clustered Collection can handle writes without having to re-trace the affected cluster. Clustered Collection chooses clusters likely to suffer few writes and to yield high savings from re-trace avoidance. Clustered Collection is implemented as modifications to the Racket collector. Measurements of the code and data from the Hacker News web site (which suffers from significant garbage collection pauses) and a Twitter-like application show that Clustered Collection decreases full collection pause times by a factor of three and six respectively. This improvement is possible because both applications have gigabytes of live data, modify only a small fraction of it, and usually write in ways that do not result in cluster dissolution. Identifying clusters takes more time than a full collection, but happens much less frequently than full collection.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3