List processing in real time on a serial computer

Author:

Baker Henry G.1

Affiliation:

1. Massachusetts Institute of Technology, Cambridge

Abstract

A real-time list processing system is one in which the time required by the elementary list operations (e.g. CONS, CAR, CDR, RPLACA, RPLACD, EQ, and ATOM in LISP) is bounded by a (small) constant. Classical implementations of list processing systems lack this property because allocating a list cell from the heap may cause a garbage collection, which process requires time proportional to the heap size to finish. A real-time list processing system is presented which continuously reclaims garbage, including directed cycles, while linearizing and compacting the accessible cells into contiguous locations to avoid fragmenting the free storage pool. The program is small and requires no time-sharing interrupts, making it suitable for microcode. Finally, the system requires the same average time, and not more than twice the space, of a classical implementation, and those space requirements can be reduced to approximately classical proportions by compact list representation. Arrays of different sizes, a program stack, and hash linking are simple extensions to our system, and reference counting is found to be inferior for many applications.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 303 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CHERIoT: Complete Memory Safety for Embedded Devices;56th Annual IEEE/ACM International Symposium on Microarchitecture;2023-10-28

2. Deep Dive into ZGC: A Modern Garbage Collector in OpenJDK;ACM Transactions on Programming Languages and Systems;2022-09-21

3. Mako: a low-pause, high-throughput evacuating collector for memory-disaggregated datacenters;Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation;2022-06-09

4. Low-latency, high-throughput garbage collection;Proceedings of the 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation;2022-06-09

5. Alligator collector: a latency-optimized garbage collector for functional programming languages;Proceedings of the 2020 ACM SIGPLAN International Symposium on Memory Management;2020-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3