MULTILISP: a language for concurrent symbolic computation

Author:

Halstead Robert H.1

Affiliation:

1. Massachusetts Institute of Technology, Cambridge

Abstract

Multilisp is a version of the Lisp dialect Scheme extended with constructs for parallel execution. Like Scheme, Multilisp is oriented toward symbolic computation. Unlike some parallel programming languages, Multilisp incorporates constructs for causing side effects and for explicitly introducing parallelism. The potential complexity of dealing with side effects in a parallel context is mitigated by the nature of the parallelism constructs and by support for abstract data types: a recommended Multilisp programming style is presented which, if followed, should lead to highly parallel, easily understandable programs. Multilisp is being implemented on the 32-processor Concert multiprocessor; however, it is ultimately intended for use on larger multiprocessors. The current implementation, called Concert Multilisp , is complete enough to run the Multilisp compiler itself and has been run on Concert prototypes including up to eight processors. Concert Multilisp uses novel techniques for task scheduling and garbage collection. The task scheduler helps control excessive resource utilization by means of an unfair scheduling policy; the garbage collector uses a multiprocessor algorithm based on the incremental garbage collector of Baker.

Publisher

Association for Computing Machinery (ACM)

Subject

Software

Cited by 565 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Language-Agnostic Static Deadlock Detection for Futures;Proceedings of the 29th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming;2024-02-20

2. COWS for High Performance: Cost Aware Work Stealing for Irregular Parallel Loop;ACM Transactions on Architecture and Code Optimization;2024-01-19

3. Disentanglement with Futures, State, and Interaction;Proceedings of the ACM on Programming Languages;2024-01-05

4. Active Objects Based on Algebraic Effects;Lecture Notes in Computer Science;2024

5. Futures for Dynamic Dependencies – Parallelizing the $$\mathcal {H}$$-LU Factorization;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3