Can programming be liberated from the von Neumann style?

Author:

Backus John1

Affiliation:

1. IBM Research Center, San Jose, CA

Abstract

Conventional programming languages are growing ever more enormous, but not stronger. Inherent defects at the most basic level cause them to be both fat and weak: their primitive word-at-a-time style of programming inherited from their common ancestor—the von Neumann computer, their close coupling of semantics to state transitions, their division of programming into a world of expressions and a world of statements, their inability to effectively use powerful combining forms for building new programs from existing ones, and their lack of useful mathematical properties for reasoning about programs. An alternative functional style of programming is founded on the use of combining forms for creating programs. Functional programs deal with structured data, are often nonrepetitive and nonrecursive, are hierarchically constructed, do not name their arguments, and do not require the complex machinery of procedure declarations to become generally applicable. Combining forms can use high level programs to build still higher level ones in a style not possible in conventional languages. Associated with the functional style of programming is an algebra of programs whose variables range over programs and whose operations are combining forms. This algebra can be used to transform programs and to solve equations whose “unknowns” are programs in much the same way one transforms equations in high school algebra. These transformations are given by algebraic laws and are carried out in the same language in which programs are written. Combining forms are chosen not only for their programming power but also for the power of their associated algebraic laws. General theorems of the algebra give the detailed behavior and termination conditions for large classes of programs. A new class of computing systems uses the functional programming style both in its programming language and in its state transition rules. Unlike von Neumann languages, these systems have semantics loosely coupled to states—only one state transition occurs per major computation.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3