Mitosis compiler

Author:

Quiñones Carlos García1,Madriles Carlos1,Sánchez Jesús1,Marcuello Pedro1,González Antonio1,Tullsen Dean M.2

Affiliation:

1. Universitat Politècnica de Catalunya, Barcelona

2. University of California, San Diego, CA

Abstract

Speculative parallelization can provide significant sources of additional thread-level parallelism, especially for irregular applications that are hard to parallelize by conventional approaches. In this paper, we present the Mitosis compiler, which partitions applications into speculative threads, with special emphasis on applications for which conventional parallelizing approaches fail.The management of inter-thread data dependences is crucial for the performance of the system. The Mitosis framework uses a pure software approach to predict/compute the thread's input values. This software approach is based on the use of pre-computation slices (p-slices), which are built by the Mitosis compiler and added at the beginning of the speculative thread. P-slices must compute thread input values accurately but they do not need to guarantee correctness, since the underlying architecture can detect and recover from misspeculations. This allows the compiler to use aggressive/unsafe optimizations to significantly reduce their overhead. The most important optimizations included in the Mitosis compiler and presented in this paper are branch pruning, memory and register dependence speculation, and early thread squashing.Performance evaluation of Mitosis compiler/architecture shows an average speedup of 2.2.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. IDaTPA: importance degree based thread partitioning approach in thread level speculation;Discover Computing;2024-06-19

2. A new thread-level speculative automatic parallelization model and library based on duplicate code execution;The Journal of Supercomputing;2024-03-11

3. A Unified Memory Dependency Framework for Speculative High-Level Synthesis;Proceedings of the 33rd ACM SIGPLAN International Conference on Compiler Construction;2024-02-17

4. An efficient hardware supported and parallelization architecture for intelligent systems to overcome speculative overheads;International Journal of Intelligent Systems;2022-09-08

5. Scalable FSM parallelization via path fusion and higher-order speculation;Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems;2021-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3