IDaTPA: importance degree based thread partitioning approach in thread level speculation

Author:

Yuxiang Li,Zhiyong Zhang,Xinyong Wang,Shuaina Huang,Yaning Su

Abstract

AbstractAs an auto-parallelization technique with the level of thread on multi-core, Thread-Level Speculation (TLS) which is also called Speculative Multithreading (SpMT), partitions programs into multiple threads and speculatively executes them under conditions of ambiguous data and control dependence. Thread partitioning approach plays a key role to the performance enhancement in TLS. The existing heuristic rules-based approach (HR-based approach) which is an one-size-fits-all strategy, can not guarantee to achieve the satisfied thread partitioning. In this paper, an importance degree based thread partitioning approach (IDaTPA) is proposed to realize the partition of irregular programs into multithreads. IDaTPA implements biasing partitioning for every procedure with a machine learning method. It mainly includes: constructing sample set, expression of knowledge, calculation of similarity, prediction model and the partition of the irregular programs is performed by the prediction model. Using IDaTPA, the subprocedures in unseen irregular programs can obtain their satisfied partition. On a generic SpMT processor (called Prophet) to perform the performance evaluation for multithreaded programs, the IDaTPA is evaluated and averagely delivers a speedup of 1.80 upon a 4-core processor. Furthermore, in order to obtain the portability evaluation of IDaTPA, we port IDaTPA to 8-core processor and obtain a speedup of 2.82 on average. Experiment results show that IDaTPA obtains a significant speedup increasement and Olden benchmarks respectively deliver a 5.75% performance improvement on 4-core and a 6.32% performance improvement on 8-core, and SPEC2020 benchmarks obtain a 38.20% performance improvement than the conventional HR-based approach.

Funder

Henan Province Key Scien tific and Technological Projects

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Project of Leading Talents in Science and Technology Innovation for Thou- sands of People Plan in Henan Province

The Key Research and Development Plan Special Project of Henan Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3