A new thread-level speculative automatic parallelization model and library based on duplicate code execution

Author:

Martínez Millán A.ORCID,Fraguela Basilio B.ORCID,Cabaleiro José C.ORCID,Rivera Francisco F.ORCID

Abstract

AbstractLoop-efficient automatic parallelization has become increasingly relevant due to the growing number of cores in current processors and the programming effort needed to parallelize codes in these systems efficiently. However, automatic tools fail to extract all the available parallelism in irregular loops with indirections, race conditions or potential data dependency violations, among many other possible causes. One of the successful ways to automatically parallelize these loops is the use of speculative parallelization techniques. This paper presents a new model and the corresponding C++ library that supports the speculative automatic parallelization of loops in shared memory systems, seeking competitive performance and scalability while keeping user effort to a minimum. The primary speculative strategy consists of redundantly executing chunks of loop iterations in a duplicate fashion. Namely, each chunk is executed speculatively in parallel to obtain results as soon as possible and sequentially in a different thread to validate the speculative results. The implementation uses C++11 threads and it makes intensive use of templates and advanced multithreading techniques. An evaluation based on various benchmarks confirms that our proposal provides a competitive level of performance and scalability.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3