Multiversion-based view maintenance over distributed data sources

Author:

Chen Songting1,Liu Bin1,Rundensteiner Elke A.1

Affiliation:

1. Worcester Polytechnic Institute, Worcester, MA

Abstract

Materialized views can be maintained by submitting maintenance queries to the data sources. However, the query results may be erroneous due to concurrent source updates. State-of-the-art maintenance strategies typically apply compensations to resolve such conflicts and assume all source schemata remain stable over time. In a loosely coupled dynamic environment, the sources may autonomously change not only their data but also their schema or semantics. Consequently, either the maintenance or the compensation queries may be broken. Unlike compensation-based approaches found in the literature, we instead model the complete materialized view maintenance process as a view maintenance transaction (VM_Transaction). This way, the anomaly problem can be rephrased as the serializability of VM_Transactions. To achieve VM_Transaction serializability, we propose a multiversion concurrency control algorithm, called TxnWrap , which is shown to be the appropriate design for loosely coupled environments with autonomous data sources. TxnWrap is complementary to the maintenance algorithms proposed in the literature, since it removes concurrency issues from consideration allowing the designer to focus on the maintenance logic. We show several optimizations of TxnWrap, in particular, (1) space optimizations on versioned data materialization and (2) parallel maintenance scheduling. With these optimizations, TxnWrap even outperforms state-of-the-art view maintenance solutions in terms of refresh time. Further, several design choices of TxnWrap are studied each having its respective advantages for certain environmental settings. A correctness proof based on transaction theory for TxnWrap is also provided. Last, we have implemented TxnWrap. The experimental results confirm that TxnWrap achieves predictable performance under a varying rate of concurrency.

Publisher

Association for Computing Machinery (ACM)

Subject

Information Systems

Reference34 articles.

1. Bernstein P. A. Hadzilacos V. and Goodman N. 1987. Concurrency Control and Recovery in Database System. Addison-Wesley Reading M.A. Bernstein P. A. Hadzilacos V. and Goodman N. 1987. Concurrency Control and Recovery in Database System. Addison-Wesley Reading M.A.

2. Implementing Distributed Read-Only Transactions

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semantic Data Integration and Querying: A Survey and Challenges;ACM Computing Surveys;2024-04-26

2. View Materialization for Query Processing in IoT Systems;International Journal of Technology Diffusion;2022-05-20

3. Materialized View Maintenance: Issues, Classification, and Open Challenges;International Journal of Cooperative Information Systems;2019-03

4. Partial Update: Efficient Materialized View Maintenance in a Distributed Graph Database;2018 IEEE 34th International Conference on Data Engineering (ICDE);2018-04

5. Temporal and Evolving Data Warehouse Design;Scientific Programming;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3