Semantic Data Integration and Querying: A Survey and Challenges

Author:

Masmoudi Maroua1ORCID,Ben Abdallah Ben Lamine Sana2ORCID,Karray Mohamed Hedi3ORCID,Archimede Bernard3ORCID,Baazaoui Zghal Hajer4ORCID

Affiliation:

1. CY Cergy Paris University, Pau, France

2. University of Manouba, Manouba, Tunisia

3. University of Toulouse, Tarbes, France

4. CY Cergy Paris University, Pontoise, France

Abstract

Digital revolution produces massive, heterogeneous and isolated data. These latter remain underutilized, unsuitable for integrated querying and knowledge discovering. Hence the importance of this survey on data integration which identifies challenging issues and trends. First, an overview of the different generations and basics of data integration is given. Then, semantic data integration is focused, since it semantically links data allowing wider insights and decision-making. More than thirty works are reviewed. The goal is to help analysts to identify relevant criteria to compare then choose among semantic data integration approaches, focusing on the category (materialized, virtual or hybrid) and querying techniques.

Funder

OntoCommons project funded by the European Union’s Horizon 2020 research and innovation

Publisher

Association for Computing Machinery (ACM)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3