Temporal and Evolving Data Warehouse Design

Author:

Faisal Sidra1,Sarwar Mansoor1,Shahzad Khurram1ORCID,Sarwar Shahzad1,Jaffry Waqar1,Yousaf Muhammad Murtaza1ORCID

Affiliation:

1. Punjab University College of Information Technology, Lahore, Pakistan

Abstract

The data model of the classical data warehouse (formally, dimensional model) does not offer comprehensive support for temporal data management. The underlying reason is that it requires consideration of several temporal aspects, which involve various time stamps. Also, transactional systems, which serves as a data source for data warehouse, have the tendency to change themselves due to changing business requirements. The classical dimensional model is deficient in handling changes to transaction sources. This has led to the development of various schemes, including evolution of data and evolution of data model and versioning of dimensional model. These models have their own strengths and limitations, but none fully satisfies the above-stated broad range of aspects, making it difficult to compare the proposed schemes with one another. This paper analyses the schemes that satisfy such challenging aspects faced by a data warehouse and proposes taxonomy for characterizing the existing models to temporal data management in data warehouse. The paper also discusses some open challenges.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Temporal and Flexible Data Warehouses;Communications in Computer and Information Science;2024

2. A survey on spatial, temporal, and spatio-temporal database research and an original example of relevant applications using SQL ecosystem and deep learning;Journal of Information and Telecommunication;2020-09-17

3. Maintaining Dimension's History in Data Warehouses Effectively;International Journal of Data Warehousing and Mining;2019-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3