GraphScale: Scalable Processing on FPGAs for HBM and Large Graphs

Author:

Dann Jonas1,Ritter Daniel2,Fröning Holger3

Affiliation:

1. SAP SE, Germany and Heidelberg University, Germany

2. SAP SE, Germany

3. Heidelberg University, Germany

Abstract

Recent advances in graph processing on FPGAs promise to alleviate performance bottlenecks with irregular memory access patterns. Such bottlenecks challenge performance for a growing number of important application areas like machine learning and data analytics. While FPGAs denote a promising solution through flexible memory hierarchies and massive parallelism, we argue that current graph processing accelerators either use the off-chip memory bandwidth inefficiently or do not scale well across memory channels. In this work, we propose GraphScale, a scalable graph processing framework for FPGAs. GraphScale combines multi-channel memory with asynchronous graph processing (i. e., for fast convergence on results) and a compressed graph representation (i. e., for efficient usage of memory bandwidth and reduced memory footprint). GraphScale solves common graph problems like breadth-first search, PageRank, and weakly-connected components through modular user-defined functions, a novel two-dimensional partitioning scheme, and a high-performance two-level crossbar design. Additionally, we extend GraphScale to scale to modern high-bandwidth memory (HBM) and reduce partitioning overhead of large graphs with binary packing.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference31 articles.

1. Junwhan Ahn Sungpack Hong Sungjoo Yoo Onur Mutlu and Kiyoung Choi. 2015. A Scalable Processing-in-memory Accelerator for Parallel Graph Processing. In ISCA. ACM 105–117. Junwhan Ahn Sungpack Hong Sungjoo Yoo Onur Mutlu and Kiyoung Choi. 2015. A Scalable Processing-in-memory Accelerator for Parallel Graph Processing. In ISCA. ACM 105–117.

2. Osama G. Attia Tyler Johnson Kevin Townsend Phillip H. Jones and Joseph Zambreno. 2014. CyGraph: A Reconfigurable Architecture for Parallel Breadth-First Search. In IPDPS. 228–235. Osama G. Attia Tyler Johnson Kevin Townsend Phillip H. Jones and Joseph Zambreno. 2014. CyGraph: A Reconfigurable Architecture for Parallel Breadth-First Search. In IPDPS. 228–235.

3. Vignesh Balaji and Brandon Lucia . 2018. When is Graph Reordering an Optimization? Studying the Effect of Lightweight Graph Reordering Across Applications and Input Graphs . In IISWC. IEEE Computer Society , 203–214. Vignesh Balaji and Brandon Lucia. 2018. When is Graph Reordering an Optimization? Studying the Effect of Lightweight Graph Reordering Across Applications and Input Graphs. In IISWC. IEEE Computer Society, 203–214.

4. Maciej Besta Emanuel Peter Robert Gerstenberger Marc Fischer Michal Podstawski Claude Barthels Gustavo Alonso and Torsten Hoefler. 2019. Demystifying Graph Databases: Analysis and Taxonomy of Data Organization System Designs and Graph Queries. CoRR abs/1910.09017(2019). Maciej Besta Emanuel Peter Robert Gerstenberger Marc Fischer Michal Podstawski Claude Barthels Gustavo Alonso and Torsten Hoefler. 2019. Demystifying Graph Databases: Analysis and Taxonomy of Data Organization System Designs and Graph Queries. CoRR abs/1910.09017(2019).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3