Grapher: A Reconfigurable Graph Computing Accelerator with Optimized Processing Elements

Author:

Deng Junyong1ORCID,Lu Songtao1ORCID,Zhang Baoxiang1,Jia Yanting1

Affiliation:

1. The School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China

Abstract

In recent years, various graph computing architectures have been proposed to process graph data that represent complex dependencies between different objects in the world. The designs of the processing element (PE) in traditional graph computing accelerators are often optimized for specific graph algorithms or tasks, which limits their flexibility in processing different types of graph algorithms, or the parallel configuration that can be supported by their PE arrays is inefficient. To achieve both flexibility and efficiency, this paper proposes Grapher, a reconfigurable graph computing accelerator based on an optimized PE array, efficiently supporting multiple graph algorithms, enhancing parallel computation, and improving adaptability and system performance through dynamic hardware resource configuration. To verify the performance of Grapher, this paper selected six datasets from the Stanford Network Analysis Project (SNAP) database for testing. Compared with the existing typical graph frameworks Ligra, Gemini, and GraphBIG, the processing time for the six datasets using the BFS, CC, and PR algorithms was reduced by up to 39.31%, 35.43%, and 27.67%, respectively. The energy efficiency has also been improved by 1.8× compared to Hitgraph and 4.7× compared to ThunderGP.

Funder

National Science and Technology Major Project

National Natural Science Foundation of China

Shaanxi Key Research and Development Project

Key Scientific Research Project of Shaanxi Department of Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3