The future is big graphs

Author:

Sakr Sherif1,Bonifati Angela2,Voigt Hannes3,Iosup Alexandru4,Ammar Khaled5,Angles Renzo6,Aref Walid7,Arenas Marcelo8,Besta Maciej9,Boncz Peter A.10,Daudjee Khuzaima11,Valle Emanuele Della12,Dumbrava Stefania13,Hartig Olaf14,Haslhofer Bernhard15,Hegeman Tim16,Hidders Jan17,Hose Katja18,Iamnitchi Adriana19,Kalavri Vasiliki20,Kapp Hugo21,Martens Wim22,Özsu M. Tamer11,Peukert Eric23,Plantikow Stefan24,Ragab Mohamed25,Ripeanu Matei R.26,Salihoglu Semih11,Schulz Christian27,Selmer Petra24,Sequeda Juan F.28,Shinavier Joshua29,Szárnyas Gábor30,Tommasini Riccardo25,Tumeo Antonino31,Uta Alexandru16,Varbanescu Ana Lucia32,Wu Hsiang-Yun33,Yakovets Nikolay34,Yan Da35,Yoneki Eiko36

Affiliation:

1. University of Tartu, Estonia

2. Lyon 1 University and Liris CNRS in Villeurbanne, France

3. Neo4j, Germany

4. Vrije Universiteit Amsterdam and Delft University of Technology, The Netherlands

5. Borialis AI

6. University of Talca

7. Purdue University

8. PUC & IMFD

9. ETH Zürich

10. CWI

11. University of Waterloo

12. Polytechnic University of Milan

13. ENSIIE

14. Linköping University

15. Austrian Institute of Technology

16. VU University Amsterdam

17. Birkbeck, University of London

18. Aalborg University

19. University of South Florida

20. Boston University

21. Oracle Labs Switzerland

22. Universität Bayreuth

23. Universität Leipzig

24. Neo4j

25. University of Tartu

26. University of British Columbia

27. Heidelberg University and Universität Wien

28. data.world

29. Uber Engineering

30. Budapest Univ. of Technology and Economics

31. Pacific Northwest National Lab

32. University of Amsterdam

33. TU Wien

34. TU Eindhoven

35. The University of Alabama

36. University of Cambridge

Abstract

Ensuring the success of big graph processing for the next decade and beyond.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3