Affiliation:
1. University of Notre Dame
2. University of Memphis
Abstract
We present AutoTutor and Affective AutoTutor as examples of innovative 21stcentury interactive intelligent systems that promote learning and engagement. AutoTutor is an intelligent tutoring system that helps students compose explanations of difficult concepts in Newtonian physics and enhances computer literacy and critical thinking by interacting with them in natural language with adaptive dialog moves similar to those of human tutors. AutoTutor constructs a cognitive model of students' knowledge levels by analyzing the text of their typed or spoken responses to its questions. The model is used to dynamically tailor the interaction toward individual students' zones of proximal development. Affective AutoTutor takes the individualized instruction and human-like interactivity to a new level by automatically detecting and responding to students' emotional states in addition to their cognitive states. Over 20 controlled experiments comparing AutoTutor with ecological and experimental controls such reading a textbook have consistently yielded learning improvements of approximately one letter grade after brief 30--60-minute interactions. Furthermore, Affective AutoTutor shows even more dramatic improvements in learning than the original AutoTutor system, particularly for struggling students with low domain knowledge. In addition to providing a detailed description of the implementation and evaluation of AutoTutor and Affective AutoTutor, we also discuss new and exciting technologies motivated by AutoTutor such as AutoTutor-Lite, Operation ARIES, GuruTutor, DeepTutor, MetaTutor, and AutoMentor. We conclude this article with our vision for future work on interactive and engaging intelligent tutoring systems.
Funder
Division of Research, Evaluation, and Communication
Institute of Education Sciences
U.S. Department of Defense
Office of Naval Research
National Science Foundation
Publisher
Association for Computing Machinery (ACM)
Subject
Artificial Intelligence,Human-Computer Interaction
Cited by
178 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献