AutoTutor and affective autotutor

Author:

D'mello Sidney1,Graesser Art2

Affiliation:

1. University of Notre Dame

2. University of Memphis

Abstract

We present AutoTutor and Affective AutoTutor as examples of innovative 21stcentury interactive intelligent systems that promote learning and engagement. AutoTutor is an intelligent tutoring system that helps students compose explanations of difficult concepts in Newtonian physics and enhances computer literacy and critical thinking by interacting with them in natural language with adaptive dialog moves similar to those of human tutors. AutoTutor constructs a cognitive model of students' knowledge levels by analyzing the text of their typed or spoken responses to its questions. The model is used to dynamically tailor the interaction toward individual students' zones of proximal development. Affective AutoTutor takes the individualized instruction and human-like interactivity to a new level by automatically detecting and responding to students' emotional states in addition to their cognitive states. Over 20 controlled experiments comparing AutoTutor with ecological and experimental controls such reading a textbook have consistently yielded learning improvements of approximately one letter grade after brief 30--60-minute interactions. Furthermore, Affective AutoTutor shows even more dramatic improvements in learning than the original AutoTutor system, particularly for struggling students with low domain knowledge. In addition to providing a detailed description of the implementation and evaluation of AutoTutor and Affective AutoTutor, we also discuss new and exciting technologies motivated by AutoTutor such as AutoTutor-Lite, Operation ARIES, GuruTutor, DeepTutor, MetaTutor, and AutoMentor. We conclude this article with our vision for future work on interactive and engaging intelligent tutoring systems.

Funder

Division of Research, Evaluation, and Communication

Institute of Education Sciences

U.S. Department of Defense

Office of Naval Research

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Artificial Intelligence,Human-Computer Interaction

Cited by 178 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3