The sequential semantics of producer effect systems

Author:

Tate Ross1

Affiliation:

1. Cornell University, Ithaca, NY, USA

Abstract

Effects are fundamental to programming languages. Even the lambda calculus has effects, and consequently the two famous evaluation strategies produce different semantics. As such, much research has been done to improve our understanding of effects. Since Moggi introduced monads for his computational lambda calculus, further generalizations have been designed to formalize increasingly complex computational effects, such as indexed monads followed by layered monads followed by parameterized monads. This succession prompted us to determine the most general formalization possible. In searching for this formalization we came across many surprises, such as the insufficiencies of arrows, as well as many unexpected insights, such as the importance of considering an effect as a small component of a whole system rather than just an isolated feature. In this paper we present our semantic formalization for producer effect systems, which we call a productor, and prove its maximal generality by focusing on only sequential composition of effectful computations, consequently guaranteeing that the existing monadic techniques are specializations of productors.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design,Software

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A HAT Trick: Automatically Verifying Representation Invariants using Symbolic Finite Automata;Proceedings of the ACM on Programming Languages;2024-06-20

2. Trace contracts;Journal of Functional Programming;2023

3. Polymorphic Iterable Sequential Effect Systems;ACM Transactions on Programming Languages and Systems;2021-03-31

4. Graded Hoare Logic and its Categorical Semantics;Programming Languages and Systems;2021

5. A Variety Theorem for Relational Universal Algebra;Relational and Algebraic Methods in Computer Science;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3