A HAT Trick: Automatically Verifying Representation Invariants using Symbolic Finite Automata

Author:

Zhou Zhe1ORCID,Ye Qianchuan1ORCID,Delaware Benjamin1ORCID,Jagannathan Suresh1ORCID

Affiliation:

1. Purdue University, WEST LAFAYETTE, USA

Abstract

Functional programs typically interact with stateful libraries that hide state behind typed abstractions. One particularly important class of applications are data structure implementations that rely on such libraries to provide a level of efficiency and scalability that may be otherwise difficult to achieve. However, because the specifications of the methods provided by these libraries are necessarily general and rarely specialized to the needs of any specific client, any required application-level invariants must often be expressed in terms of additional constraints on the (often) opaque state maintained by the library. In this paper, we consider the specification and verification of such representation invariants using symbolic finite automata (SFA). We show that SFAs can be used to succinctly and precisely capture fine-grained temporal and data-dependent histories of interactions between functional clients and stateful libraries. To facilitate modular and compositional reasoning, we integrate SFAs into a refinement type system to qualify stateful computations resulting from such interactions. The particular instantiation we consider, Hoare Automata Types (HATs), allows us to both specify and automatically type-check the representation invariants of a datatype, even when its implementation depends on stateful library methods that operate over hidden state. We also develop a new bidirectional type checking algorithm that implements an efficient subtyping inclusion check over HATs, enabling their translation into a form amenable for SMT-based automated verification. We present extensive experimental results on an implementation of this algorithm that demonstrates the feasibility of type-checking complex and sophisticated HAT-specified OCaml data structure implementations layered on top of stateful library APIs.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3