Parameterised notions of computation

Author:

ATKEY ROBERT

Abstract

AbstractMoggi's Computational Monads and Poweret al.'s equivalent notion of Freyd category have captured a large range of computational effects present in programming languages. Examples include non-termination, non-determinism, exceptions, continuations, side effects and input/output. We present generalisations of both computational monads and Freyd categories, which we callparameterisedmonads andparameterisedFreyd categories, that also capture computational effects with parameters. Examples of such are composable continuations, side effects where the type of the state varies and input/output where the range of inputs and outputs varies. By considering structured parameterisation also, we extend the range of effects to cover separated side effects and multiple independent streams of I/O. We also present two typed λ-calculi that soundly and completely model our categorical definitions – with and without symmetric monoidal parameterisation – and act as prototypical languages with parameterised effects.

Publisher

Cambridge University Press (CUP)

Subject

Software

Reference37 articles.

1. Atkey R. (2006) Substructural Simple Type Theories for Separation and In-place Update. PhD thesis, University of Edinburgh.

2. Premonoidal categories and notions of computation

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Abstracting Effect Systems for Algebraic Effect Handlers;Proceedings of the ACM on Programming Languages;2024-08-15

2. Proofs as stateful programs: A first-order logic with abstract Hoare triples, and an interpretation into an imperative language;Logical Methods in Computer Science;2024-01-26

3. Polymorphic Typestate for Session Types;International Symposium on Principles and Practice of Declarative Programming;2023-10-22

4. Strongly-Typed Multi-View Stack-Based Computations;International Symposium on Principles and Practice of Declarative Programming;2023-10-22

5. ElixirST: A session-based type system for Elixir modules;Journal of Logical and Algebraic Methods in Programming;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3