SOC test architecture design for efficient utilization of test bandwidth

Author:

Goel Sandeep Kumar1,Marinissen Erik Jan1

Affiliation:

1. Philips Research Laboratories, Eindhoven, The Netherlands

Abstract

This article deals with the design of on-chip architectures for testing large system chips (SOCs) for manufacturing defects in a modular fashion. These architectures consist of wrappers and test access mechanisms (TAMs). For an SOC with specified parameters of modules and their tests, we design an architecture that minimizes the required tester vector memory depth and test application time. In this article, we formulate the test architecture design problems for both modules with fixed- and flexible-length scan chains, assuming the relevant module parameters and a maximal SOC TAM width are given. Subsequently, we derive a formulation for an architecture-independent lower bound for the SOC test time. We analyze three types of TAM under-utilization that make the theoretical lower bound unachievable in most practical architecture instances. We present a novel architecture-independent heuristic algorithm that effectively optimizes the test architecture for a given SOC. The algorithm efficiently determines the number of TAMs and their widths, the assignment of modules to TAMs, and the wrapper design per module. We show how this algorithm can be used for optimizing both test bus and TestRail architectures with either serial or parallel test schedules. Experimental results for the ITC'02 SOC Test Benchmarks show that, compared to manual best-effort engineering approaches, we can save up to 75% in test times, while compared to previously published algorithms, we obtain comparable or better test times at negligible compute time.

Publisher

Association for Computing Machinery (ACM)

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Test architecture optimization algorithms for coarse-grain partitioned 3D system-on-chip;Computers and Electrical Engineering;2022-07

2. Heuristic-Based Test Solution for 3D System on Chip;Cognitive Informatics and Soft Computing;2022

3. A TSV Constrained Algorithm for Designing Balanced Wrapper Chains in 3D SoC;Lecture Notes in Networks and Systems;2021-11-03

4. Designing balanced wrapper chains in 3D SoC under constrained TSVs;Innovations in Systems and Software Engineering;2021-05-25

5. Co-Optimization of Test Wrapper Length and TSV for TSV Based 3D SOCs;Journal of Electronic Testing;2020-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3