Online Learning for Adaptive Video Streaming in Mobile Networks

Author:

Karagkioules Theodoros1ORCID,Paschos Georgios S.2,Liakopoulos Nikolaos3,Fiandrotti Attilio1,Tsilimantos Dimitrios3,Cagnazzo Marco4

Affiliation:

1. Télécom Paris, Palaiseau, France

2. Amazon.com, Boulogne-Billancourt, France

3. Huawei Technologies, Boulogne-Billancourt, France

4. Télécom Paris, Palaiseau, France

Abstract

In this paper, we propose a novel algorithm for video bitrate adaptation in HTTP Adaptive Streaming (HAS), based on online learning. The proposed algorithm, named Learn2Adapt (L2A) , is shown to provide a robust bitrate adaptation strategy which, unlike most of the state-of-the-art techniques, does not require parameter tuning, channel model assumptions, or application-specific adjustments. These properties make it very suitable for mobile users, who typically experience fast variations in channel characteristics. Experimental results, over real 4G traffic traces, show that L2A improves on the overall Quality of Experience (QoE) and in particular the average streaming bitrate, a result obtained independently of the channel and application scenarios.

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Reference58 articles.

1. [n.d.]. dash.js. https://github.com/Dash-Industry-Forum/dash.js.

2. Saamer Akhshabi, Lakshmi Anantakrishnan, Constantine Dovrolis, and Ali C. Begen. 2013. Server-based traffic shaping for stabilizing oscillating adaptive streaming players. In Proc. ACM NOSSDAV.

3. QoE-Fair DASH Video Streaming Using Server-side Reinforcement Learning

4. Online convex optimization and no-regret learning: Algorithms, guarantees and applications;Belmega Elena Veronica;arXiv e-prints,2018

5. ORL-SDN

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AP-assisted adaptive video streaming in wireless networks with high-density clients;Computer Communications;2024-04

2. Supervised Hierarchical Online Hashing for Cross-modal Retrieval;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-01-11

3. All Predictions Matter: an Online Video Prediction Approach;2023 11th European Workshop on Visual Information Processing (EUVIP);2023-09-11

4. Instance-Based Continual Learning: A Real-World Dataset and Baseline for Fresh Recognition;ACM Transactions on Multimedia Computing, Communications, and Applications;2023-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3