Affiliation:
1. Huazhong University of Science and Technology, China
2. Huawei Technologies Co., Ltd., China
Abstract
Online cross-modal hashing has gained attention for its adaptability in processing streaming data. However, existing methods only define the hard similarity between data using labels. This results in poor retrieval performance, as they fail to exploit the semantic structure information of labels and miss the high-quality hash codes guided by the hierarchical relevance between labels. In addition, they ignore the bit-flipping problem, which leads to sub-optimal cross-modal retrieval performance. To address these issues, we propose Supervised Hierarchical Online Hashing (SHOH) for cross-modal retrieval. Our approach acquires hierarchical similarity via cross-layer affiliation of labels and explores its application to online hashing. We design a hierarchical similarity learning method in the online learning framework, which includes virtual center learning and hierarchical similarity embedding. Labels with soft similarity bridge the label hierarchy and cross-modal hash embedding. Furthermore, we propose a Weighted Retrieval Strategy (WRS) to mitigate the impact caused by bit-flipping errors. Extensive experiments and verification on hierarchical and non-hierarchical datasets demonstrate that SHOH preserves accurate inter-class distances and achieves performance improvements compared to state-of-the-art methods. The source code is available at
https://github.com/HUST-IDSM-AI/SHOH
.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hubei Province
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture
Reference53 articles.
1. ORL-SDN
2. MIHash: Online Hashing with Mutual Information
3. Xixian Chen, Irwin King, and Michael R. Lyu. 2017. FROSH: FasteR online sketching hashing. In 33rd Conference on Uncertainty in Artificial Intelligence, Gal Elidan, Kristian Kersting, and Alexander Ihler (Eds.). AUAI Press. Retrieved from http://auai.org/uai2017/proceedings/papers/12.pdf
4. Local Graph Convolutional Networks for Cross-Modal Hashing
5. NUS-WIDE
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献