QoE-Fair DASH Video Streaming Using Server-side Reinforcement Learning

Author:

Altamimi Sa’di1ORCID,Shirmohammadi Shervin1ORCID

Affiliation:

1. University of Ottawa, Canada

Abstract

To design an optimal adaptive video streaming method, video service providers need to consider both the efficiency and the fairness of the Quality of Experience (QoE) of their users. In Reference [8], we proposed a server-side QoE-fair rate adaptation method that considers both efficiency and fairness of the QoE. The server uses Reinforcement Learning (RL) to select a bitrate for each client sharing the same bottleneck link to the server in a way that achieves fairness among concurrent DASH clients and imposes that bitrate by dynamically modifying the client’s Media Presentation Description (MPD) file. In this article, we extend that work to minimize the number of actions the server needs to take to keep the system in its equilibrium state. By incorporating a Recurrent Neural Network, specifically an LSTM model, we modify the server’s training algorithm to achieve improvements in both the quality and the quantity of actions the server takes to guide the client. Performance evaluation of the modified algorithm for clients running both homogeneous and heterogeneous adaptation algorithms showed that the number of server actions dropped by 14% and 22%, respectively, while QoE-fairness improved by at least 6% and 10%, respectively.

Funder

Cisco Systems

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Networks and Communications,Hardware and Architecture

Reference35 articles.

1. 2012. ITU-T Recommendation G.1070 Opinion Model for Video Applications. 2012. ITU-T Recommendation G.1070 Opinion Model for Video Applications.

2. 2014. ISO/IEC 23009-1 Information Technology - Dynamic Adaptive Streaming Over HTTP (DASH) - Part 1: Media Presentation Description and Segment Formats. 2014. ISO/IEC 23009-1 Information Technology - Dynamic Adaptive Streaming Over HTTP (DASH) - Part 1: Media Presentation Description and Segment Formats.

3. What happens when HTTP adaptive streaming players compete for bandwidth?

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3