Affiliation:
1. Zhejiang University
2. Michigan State University
Abstract
In this paper, we present a method for constructing a 3D
cross-frame field
, a 3D extension of the 2D cross-frame field as applied to surfaces in applications such as quadrangulation and texture synthesis. In contrast to the surface cross-frame field (equivalent to a 4-Way Rotational-Symmetry vector field), symmetry for 3D cross-frame fields cannot be formulated by simple one-parameter 2D rotations in the tangent planes. To address this critical issue, we represent the 3D frames by spherical harmonics, in a manner invariant to combinations of rotations around any axis by multiples of π/2. With such a representation, we can formulate an efficient smoothness measure of the cross-frame field. Through minimization of this measure under certain boundary conditions, we can construct a smooth 3D cross-frame field that is aligned with the surface normal at the boundary. We visualize the resulting cross-frame field through restrictions to the boundary surface, streamline tracing in the volume, and singularities. We also demonstrate the application of the 3D cross-frame field to producing hexahedron-dominant meshes for given volumes, and discuss its potential in high-quality hexahedralization, much as its 2D counterpart has shown in quadrangulation.
Funder
Division of Computing and Communication Foundations
Division of Civil, Mechanical and Manufacturing Innovation
Division of Information and Intelligent Systems
Ministry of Science and Technology of the People's Republic of China
National Natural Science Foundation of China
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Graphics and Computer-Aided Design
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献