A complex model decomposition algorithm based on 3D frame fields and features

Author:

Zhang ChengpengORCID,Yu Zhihua,Shi Jimin,Li YuORCID,Xu Wenqiang,Guo Zheyi,Zhang Hongshi,Zhu Zhongyuan,Qiang Sheng

Abstract

PurposeHexahedral meshing is one of the most important steps in performing an accurate simulation using the finite element analysis (FEA). However, the current hexahedral meshing method in the industry is a nonautomatic and inefficient method, i.e. manually decomposing the model into suitable blocks and obtaining the hexahedral mesh from these blocks by mapping or sweeping algorithms. The purpose of this paper is to propose an almost automatic decomposition algorithm based on the 3D frame field and model features to replace the traditional time-consuming and laborious manual decomposition method.Design/methodology/approachThe proposed algorithm is based on the 3D frame field and features, where features are used to construct feature-cutting surfaces and the 3D frame field is used to construct singular-cutting surfaces. The feature-cutting surfaces constructed from concave features first reduce the complexity of the model and decompose it into some coarse blocks. Then, an improved 3D frame field algorithm is performed on these coarse blocks to extract the singular structure and construct singular-cutting surfaces to further decompose the coarse blocks. In most modeling examples, the proposed algorithm uses both types of cutting surfaces to decompose models fully automatically. In a few examples with special requirements for hexahedral meshes, the algorithm requires manual input of some user-defined cutting surfaces and constructs different singular-cutting surfaces to ensure the effectiveness of the decomposition.FindingsBenefiting from the feature decomposition and the 3D frame field algorithm, the output blocks of the proposed algorithm have no inner singular structure and are suitable for the mapping or sweeping algorithm. The introduction of internal constraints makes 3D frame field generation more robust in this paper, and it can automatically correct some invalid 3–5 singular structures. In a few examples with special requirements, the proposed algorithm successfully generates valid blocks even though the singular structure of the model is modified by user-defined cutting surfaces.Originality/valueThe proposed algorithm takes the advantage of feature decomposition and the 3D frame field to generate suitable blocks for a mapping or sweeping algorithm, which saves a lot of simulation time and requires less experience. The user-defined cutting surfaces enable the creation of special hexahedral meshes, which was difficult with previous algorithms. An improved 3D frame field generation method is proposed to correct some invalid singular structures and improve the robustness of the previous methods.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3