Robust Topological Construction of All-hexahedral Boundary Layer Meshes

Author:

Reberol Maxence1ORCID,Verhetsel Kilian1ORCID,Henrotte François1ORCID,Bommes David2ORCID,Remacle Jean-François1ORCID

Affiliation:

1. Université catholique de Louvain, Louvain-la-Neuve, Belgique

2. University of Bern, Bern, Switzerland

Abstract

We present a robust technique to build a topologically optimal all-hexahedral layer on the boundary of a model with arbitrarily complex ridges and corners. The generated boundary layer mesh strictly respects the geometry of the input surface mesh, and it is optimal in the sense that the hexahedral valences of the boundary edges are as close as possible to their ideal values (local dihedral angle divided by 90°). Starting from a valid watertight surface mesh (all-quad in practice), we build a global optimization integer programming problem to minimize the mismatch between the hexahedral valences of the boundary edges and their ideal values. The formulation of the integer programming problem relies on the duality between boundary hexahedral configurations and triangulations of the disk, which we reframe in terms of integer constraints. The global problem is solved efficiently by performing combinatorial branch-and-bound searches on a series of sub-problems defined in the vicinity of complicated ridges/corners, where the local mesh topology is necessarily irregular because of the inherent constraints in hexahedral meshes. From the integer solution, we build the topology of the all-hexahedral layer, and the mesh geometry is computed by untangling/smoothing. Our approach is fully automated, topologically robust, and fast.

Funder

European Research Council

Fonds de la Recherche Scientifique de Belgique

European Union’s Horizon 2020

Publisher

Association for Computing Machinery (ACM)

Subject

Applied Mathematics,Software

Reference39 articles.

1. Michael L. Brewer, Lori Freitag Diachin, Patrick M. Knupp, Thomas Leurent, and Darryl J. Melander. 2003. The mesquite mesh quality improvement toolkit. In Proceedings of the 12th International Meshing Roundtable.

2. Fast generation of planar graphs;Brinkmann Gunnar;MATCH Commun. Math. Comput. Chem.,2007

3. Gianmarco Cherchi, Pierre Alliez, Riccardo Scateni, Max Lyon, and David Bommes. 2019. Selective padding for polycube-based hexahedral meshing. In Computer Graphics Forum, Vol. 38. Wiley Online Library, 580–591.

4. Génération de maillage et adaptation de maillage par optimisation locale;Coupez Thierry;Revue Européenne Des éléments Finis,2000

5. How to subdivide pyramids, prisms, and hexahedra into tetrahedra.;Dompierre Julien;IMR,1999

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3