Achieving energy efficiency through runtime partial reconfiguration on reconfigurable systems

Author:

Liu Shaoshan1,Pittman Richard Neil2,Forin Alessandro2,Gaudiot Jean-Luc3

Affiliation:

1. Microsoft

2. Microsoft Research

3. University of California, Irvine

Abstract

One major advantage of reconfigurable computing systems is their ability to reconfigure hardware at runtime. In this paper, we study the feasibility of achieving energy efficiency in reconfigurable computing systems (e.g., FPGAs) through runtime partial reconfiguration (PR) techniques. In the ideal scenario, we use a hardware accelerator to accelerate certain parts of the program execution; when the accelerator is not active, we use partial reconfiguration to unload it to reduce power consumption. Since the reconfiguration process may introduce a high energy overhead, it is unclear whether this approach is efficient. To approach this problem, we first analytically identify the conditions under which partial reconfiguration can reduce energy consumption. Our results indicate that the key to reduce partial reconfiguration energy overhead is to minimize the time overhead of the reconfiguration process. Based on this analysis, we design and implement a fast reconfiguration engine that achieves close-to-ideal throughput on Xilinx Virtex-4 FPGAs. Our fast reconfiguration engine utilizes a master-slave DMA pair to stream data between the SRAM and the Internal Configuration Access Port (ICAP). We experimentally verify our proposed solutions and compare our design to existing energy reduction techniques, such as clock gating. The results of our study show that by using partial reconfiguration to eliminate the power consumption of the accelerator when it is inactive, we can accelerate program execution and at the same time reduce the overall energy consumption by half.

Funder

Division of Computing and Communication Foundations

Publisher

Association for Computing Machinery (ACM)

Subject

Hardware and Architecture,Software

Reference27 articles.

1. Cacti 5.3. 2010. http://quid.hpl.hp.com:9081/cacti/. Cacti 5.3. 2010. http://quid.hpl.hp.com:9081/cacti/.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3