Arbitrarily Parallelizable Code: A Model of Computation Evaluated on a Message-Passing Many-Core System

Author:

Cook Sebastien,Garcia PauloORCID

Abstract

The number of processing elements per solution is growing. From embedded devices now employing (often heterogeneous) multi-core processors, across many-core scientific computing platforms, to distributed systems comprising thousands of interconnected processors, parallel programming of one form or another is now the norm. Understanding how to efficiently parallelize code, however, is still an open problem, and the difficulties are exacerbated across heterogeneous processing, and especially at run time, when it is sometimes desirable to change the parallelization strategy to meet non-functional requirements (e.g., load balancing and power consumption). In this article, we investigate the use of a programming model based on series-parallel partial orders: computations are expressed as directed graphs that expose parallelization opportunities and necessary sequencing by construction. This programming model is suitable as an intermediate representation for higher-level languages. We then describe a model of computation for such a programming model that maps such graphs into a stack-based structure more amenable to hardware processing. We describe the formal small-step semantics for this model of computation and use this formal description to show that the model can be arbitrarily parallelized, at compile and runtime, with correct execution guaranteed by design. We empirically support this claim and evaluate parallelization benefits using a prototype open-source compiler, targeting a message-passing many-core simulation. We empirically verify the correctness of arbitrary parallelization, supporting the validity of our formal semantics, analyze the distribution of operations within cores to understand the implementation impact of the paradigm, and assess execution time improvements when five micro-benchmarks are automatically and randomly parallelized across 2 × 2 and 4 × 4 multi-core configurations, resulting in execution time decrease by up to 95% in the best case.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3