ShapeCoder: Discovering Abstractions for Visual Programs from Unstructured Primitives

Author:

Jones R. Kenny1ORCID,Guerrero Paul2ORCID,Mitra Niloy J.32ORCID,Ritchie Daniel1ORCID

Affiliation:

1. Brown University, Providence, United States of America

2. Adobe Research, London, United Kingdom

3. University College London (UCL), London, United Kingdom

Abstract

We introduce ShapeCoder, the first system capable of taking a dataset of shapes, represented with unstructured primitives, and jointly discovering (i) useful abstraction functions and (ii) programs that use these abstractions to explain the input shapes. The discovered abstractions capture common patterns (both structural and parametric) across a dataset, so that programs rewritten with these abstractions are more compact, and suppress spurious degrees of freedom. ShapeCoder improves upon previous abstraction discovery methods, finding better abstractions, for more complex inputs, under less stringent input assumptions. This is principally made possible by two methodological advancements: (a) a shape-to-program recognition network that learns to solve sub-problems and (b) the use of e-graphs, augmented with a conditional rewrite scheme, to determine when abstractions with complex parametric expressions can be applied, in a tractable manner. We evaluate ShapeCoder on multiple datasets of 3D shapes, where primitive decompositions are either parsed from manual annotations or produced by an unsupervised cuboid abstraction method. In all domains, ShapeCoder discovers a library of abstractions that captures high-level relationships, removes extraneous degrees of freedom, and achieves better dataset compression compared with alternative approaches. Finally, we investigate how programs rewritten to use discovered abstractions prove useful for downstream tasks.

Funder

NSF

Publisher

Association for Computing Machinery (ACM)

Subject

Computer Graphics and Computer-Aided Design

Reference57 articles.

1. Inverse procedural modeling of 3D models for virtual worlds

2. Top-Down Synthesis for Library Learning

3. babble: Learning Better Abstractions with E-Graphs and Anti-unification

4. DeepSVG: A Hierarchical Generative Network for Vector Graphics Animation;Carlier Alexandre;Advances in Neural Information Processing Systems (NeurIPS),2020

5. Angel X Chang , Thomas Funkhouser , Leonidas Guibas , Pat Hanrahan , Qixing Huang , Zimo Li , Silvio Savarese , Manolis Savva , Shuran Song , Hao Su , Jianxiong Xiao , Li Yi , and Fisher Yu. 2015. ShapeNet: An information-rich 3D model repository. arXiv preprint arXiv:1512.03012 ( 2015 ). Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. 2015. ShapeNet: An information-rich 3D model repository. arXiv preprint arXiv:1512.03012 (2015).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Text‐to‐3D Shape Generation;Computer Graphics Forum;2024-04-30

2. A Survey of Methods for Converting Unstructured Data to CSG Models;Computer-Aided Design;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3