Text‐to‐3D Shape Generation

Author:

Lee H.1,Savva M.1,Chang A. X.12

Affiliation:

1. Simon Fraser University

2. Canada CIFAR AI Chair, Amii

Abstract

AbstractRecent years have seen an explosion of work and interest in text‐to‐3D shape generation. Much of the progress is driven by advances in 3D representations, large‐scale pretraining and representation learning for text and image data enabling generative AI models, and differentiable rendering. Computational systems that can perform text‐to‐3D shape generation have captivated the popular imagination as they enable non‐expert users to easily create 3D content directly from text. However, there are still many limitations and challenges remaining in this problem space. In this state‐of‐the‐art report, we provide a survey of the underlying technology and methods enabling text‐to‐3D shape generation to summarize the background literature. We then derive a systematic categorization of recent work on text‐to‐3D shape generation based on the type of supervision data required. Finally, we discuss limitations of the existing categories of methods, and delineate promising directions for future work.

Publisher

Wiley

Reference156 articles.

1. Achlioptas Panos Diamanti Olga Mitliagkas Ioannis andGuibas Leonidas. “Learning representations and generative models for 3D point clouds”.International conference on machine learning.2018 40–49. arXiv: 1707.02392 [cs.CV] 21.

2. Achlioptas Panos Fan Judy Hawkins Robert et al. “ShapeGlot: Learning language for shape differentiation”.Proceedings of the IEEE/CVF International Conference on Computer Vision.2019 8938–8947. arXiv: 1905.02925 [cs.CL] 5 6 8.

3. Achlioptas Panos Huang Ian Sung Minhyuk et al. “ShapeTalk: A Language Dataset and Framework for 3D Shape Edits and Deformations”.Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023 12685–12694. doi:10.1109/CVPR52729.2023.012205.

4. Armandpour Mohammadreza Zheng Huangjie Sadeghian Ali et al. “Re‐imagine the Negative Prompt Algorithm: Transform 2D Diffusion into 3D alleviate Janus problem and Beyond”.arXiv preprint arXiv:2304.04968(2023). arXiv: 2304.04968 [cs.CV] 14.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3