babble: Learning Better Abstractions with E-Graphs and Anti-unification

Author:

Cao David1ORCID,Kunkel Rose1ORCID,Nandi Chandrakana2ORCID,Willsey Max3ORCID,Tatlock Zachary3ORCID,Polikarpova Nadia1ORCID

Affiliation:

1. University of California at San Diego, USA

2. Certora, USA

3. University of Washington, USA

Abstract

Library learning compresses a given corpus of programs by extracting common structure from the corpus into reusable library functions. Prior work on library learning suffers from two limitations that prevent it from scaling to larger, more complex inputs. First, it explores too many candidate library functions that are not useful for compression. Second, it is not robust to syntactic variation in the input. We propose library learning modulo theory (LLMT), a new library learning algorithm that additionally takes as input an equational theory for a given problem domain. LLMT uses e-graphs and equality saturation to compactly represent the space of programs equivalent modulo the theory, and uses a novel e-graph anti-unification technique to find common patterns in the corpus more directly and efficiently. We implemented LLMT in a tool named babble. Our evaluation shows that babble achieves better compression orders of magnitude faster than the state of the art. We also provide a qualitative evaluation showing that babble learns reusable functions on inputs previously out of reach for library learning.

Funder

National Science Foundation

Publisher

Association for Computing Machinery (ACM)

Subject

Safety, Risk, Reliability and Quality,Software

Reference45 articles.

1. Matt Bowers. 2022. Compression Benchmark. https://github.com/mlb2251/compression_benchmark Matt Bowers. 2022. Compression Benchmark. https://github.com/mlb2251/compression_benchmark

2. Top-Down Synthesis for Library Learning

3. Peter E. Bulychev , Egor V. Kostylev , and Vladimir A . Zakharov . 2010 . Anti-unification Algorithms and Their Applications in Program Analysis. In Perspectives of Systems Informatics, Amir Pnueli, Irina Virbitskaite, and Andrei Voronkov (Eds.). Springer Berlin Heidelberg , Berlin, Heidelberg. 413–423. isbn:978-3-642-11486-1 Peter E. Bulychev, Egor V. Kostylev, and Vladimir A. Zakharov. 2010. Anti-unification Algorithms and Their Applications in Program Analysis. In Perspectives of Systems Informatics, Amir Pnueli, Irina Virbitskaite, and Andrei Voronkov (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg. 413–423. isbn:978-3-642-11486-1

4. Inductive Logic Programming At 30: A New Introduction

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Symbolic metaprogram search improves learning efficiency and explains rule learning in humans;Nature Communications;2024-08-10

2. Equivalence by Canonicalization for Synthesis-Backed Refactoring;Proceedings of the ACM on Programming Languages;2024-06-20

3. One or Nothing: Anti-unification over the Simply-Typed Lambda Calculus;ACM Transactions on Computational Logic;2024-06-17

4. Automatic Generation of Vectorizing Compilers for Customizable Digital Signal Processors;Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 1;2024-04-17

5. Wasm-Mutate: Fast and effective binary diversification for WebAssembly;Computers & Security;2024-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3