Achieving predictable performance through better memory controller placement in many-core CMPs

Author:

Abts Dennis1,Enright Jerger Natalie D.2,Kim John3,Gibson Dan4,Lipasti Mikko H.4

Affiliation:

1. Google Inc, Madison, WI, USA

2. University of Toronto, Toronto, ON, Canada

3. KAIST, Daejeon, South Korea

4. University of Wisconsin - Madison, Madison, WI, USA

Abstract

In the near term, Moore's law will continue to provide an increasing number of transistors and therefore an increasing number of on-chip cores. Limited pin bandwidth prevents the integration of a large number of memory controllers on-chip. With many cores, and few memory controllers, where to locate the memory controllers in the on-chip interconnection fabric becomes an important and as yet unexplored question. In this paper we show how the location of the memory controllers can reduce contention (hot spots) in the on-chip fabric and lower the variance in reference latency. This in turn provides predictable performance for memory-intensive applications regardless of the processing core on which a thread is scheduled. We explore the design space of on-chip fabrics to find optimal memory controller placement relative to different topologies (i.e. mesh and torus), routing algorithms, and workloads.

Publisher

Association for Computing Machinery (ACM)

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TNT: A Modular Approach to Traversing Physically Heterogeneous NOCs at Bare-wire Latency;ACM Transactions on Architecture and Code Optimization;2023-07-19

2. Interconnect support for energy efficient and high bandwidth memory access in CMPs;Sustainable Computing: Informatics and Systems;2022-04

3. Delegated Replies: Alleviating Network Clogging in Heterogeneous Architectures;2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA);2022-04

4. A power-performance balanced network-on-chip for mixed CPU-GPU systems;Advances in Computers;2022

5. Power efficient network selector placement in control plane of multiple networks-on-chip;The Journal of Supercomputing;2021-10-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3