Affiliation:
1. University of Chicago, USA
2. Georgia Institute of Technology, USA
3. University of Wisconsin-Madison, USA
Abstract
The ideal latency for on-chip network traversal would be the delay incurred from wire traversal alone. Unfortunately, in a realistic modular network, the latency for a packet to traverse the network is significantly higher than this wire delay. The main limiter to achieving lower latency is the modular quantization of network traversal into hops. Beyond this, the physical heterogeneity in real-world systems further complicate the ability to reach ideal wire-only delay.
In this work, we propose
TNT
or
Transparent Network Traversal
. TNT targets ideal network latency by attempting source to destination network traversal as a single multi-cycle ‘long-hop’, bypassing the quantization effects of intermediate routers via transparent data/information flow. TNT is built in a modular tile-scalable manner via a novel control path performing neighbor-to-neighbor interactions but enabling end-to-end transparent flit traversal. Further, TNT’s fine grained on-the-fly delay tracking allows it to cope with physical NOC heterogeneity across the chip.
Analysis on Ligra graph workloads shows that TNT can reduce NOC latency by as much as 43% compared to the state of the art and allows efficiency gains up to 38%. Further, it can achieve more than 3x the benefits of the best/closest alternative research proposal, SMART [
43
].
Publisher
Association for Computing Machinery (ACM)
Subject
Hardware and Architecture,Information Systems,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Reinforcement Learning-Based Dynamic Voltage and Frequency Scaling for Energy-Efficient Computing;2024 Third International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE);2024-04-26