Architecting phase change memory as a scalable dram alternative

Author:

Lee Benjamin C.1,Ipek Engin1,Mutlu Onur2,Burger Doug1

Affiliation:

1. Microsoft Research, Redmond, WA, USA

2. Carnegie Mellon University, Pittsburgh, PA, USA

Abstract

Memory scaling is in jeopardy as charge storage and sensing mechanisms become less reliable for prevalent memory technologies, such as DRAM. In contrast, phase change memory (PCM) storage relies on scalable current and thermal mechanisms. To exploit PCM's scalability as a DRAM alternative, PCM must be architected to address relatively long latencies, high energy writes, and finite endurance. We propose, crafted from a fundamental understanding of PCM technology parameters, area-neutral architectural enhancements that address these limitations and make PCM competitive with DRAM. A baseline PCM system is 1.6x slower and requires 2.2x more energy than a DRAM system. Buffer reorganizations reduce this delay and energy gap to 1.2x and 1.0x, using narrow rows to mitigate write energy and multiple rows to improve locality and write coalescing. Partial writes enhance memory endurance, providing 5.6 years of lifetime. Process scaling will further reduce PCM energy costs and improve endurance.

Publisher

Association for Computing Machinery (ACM)

Cited by 680 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Delaying Crash Consistency for Building A High-Performance Persistent Memory File System;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2024-09

2. Delay characteristics of quasi-nonvolatile memory devices operating in positive feedback mechanism;Nanotechnology;2024-07-25

3. Hybrid Magneto-electric FET-CMOS Integrated Memory Design for Instant-on Computing;Proceedings of the Great Lakes Symposium on VLSI 2024;2024-06-12

4. A Memory-Disaggregated Radix Tree;ACM Transactions on Storage;2024-06-06

5. Toward Write Optimization for Skyrmion Racetrack Memory by Skyrmion Repermutation;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3