ULP-SRP

Author:

Kim Changmoo1,Chung Mookyoung1,Cho Yeongon1,Konijnenburg Mario2,Ryu Soojung1,Kim Jeongwook1

Affiliation:

1. Samsung Advanced Institute of Technology, Korea

2. Holst Centre/imec, Heverlee, Belgium

Abstract

The latest biomedical applications require low energy consumption, high performance, and wide energy-performance scalability to adapt to various working environments. In this study, we present ULP-SRP, an energy-efficient reconfigurable processor for biomedical applications. ULP-SRP uses a Coarse-Grained Reconfigurable Array (CGRA) for high-performance data processing with low energy consumption. We adopted a compact-size CGRA and modified it to support dynamically switchable three performance modes with fine-grained power gating in order to further optimize the energy consumption. The energy-performance scalability is also accomplished with multiple performance modes and a Unified Memory Architecture (UMA). Experimental results show that ULP-SRP achieved 59% energy reduction compared to previous works. A technique of dynamic CGRA mode changing gives 18.9% energy reduction. ULP-SRP is a good candidate for future mobile healthcare devices.

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Coarse-grained reconfigurable architectures for radio baseband processing: A survey;Journal of Systems Architecture;2024-09

2. SAT-Based Exact Modulo Scheduling Mapping for Resource-Constrained CGRAs;ACM Journal on Emerging Technologies in Computing Systems;2024-07-31

3. An Overview of FPGA-inspired Obfuscation Techniques;ACM Computing Surveys;2024-07-09

4. R-Blocks: an Energy-Efficient, Flexible, and Programmable CGRA;ACM Transactions on Reconfigurable Technology and Systems;2024-05-10

5. Dual Use Circuitry for Early Failure Warning and Test;2024 25th International Symposium on Quality Electronic Design (ISQED);2024-04-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3