fgSpMSpV: A Fine-grained Parallel SpMSpV Framework on HPC Platforms

Author:

Chen Yuedan1ORCID,Xiao Guoqing1ORCID,Li Kenli1ORCID,Piccialli Francesco2ORCID,Zomaya Albert Y.3ORCID

Affiliation:

1. College of Computer Science and Electronic Engineering, Hunan University, and National Supercomputing Center in Changsha, Changsha, Hunan, China

2. Department of Electrical Engineering and Information Technologies,University of Naples Federico II, Naples, Italy

3. School of Information Technologies, University of Sydney, Sidney, NSW, Australia

Abstract

Sparse matrix-sparse vector (SpMSpV) multiplication is one of the fundamental and important operations in many high-performance scientific and engineering applications. The inherent irregularity and poor data locality lead to two main challenges to scaling SpMSpV over high-performance computing (HPC) systems: (i) a large amount of redundant data limits the utilization of bandwidth and parallel resources; (ii) the irregular access pattern limits the exploitation of computing resources. This paper proposes a fine-grained parallel SpMSpV ( fgSpMSpV ) framework on Sunway TaihuLight supercomputer to alleviate the challenges for large-scale real-world applications. First, fgSpMSpV adopts an MPI \( + \) OpenMP \( +X \) parallelization model to exploit the multi-stage and hybrid parallelism of heterogeneous HPC architectures and accelerate both pre-/post-processing and main SpMSpV computation. Second, fgSpMSpV utilizes an adaptive parallel execution to reduce the pre-processing, adapt to the parallelism and memory hierarchy of the Sunway system, while still tame redundant and random memory accesses in SpMSpV, including a set of techniques like the fine-grained partitioner, re-collection method, and Compressed Sparse Column Vector (CSCV) matrix format. Third, fgSpMSpV uses several optimization techniques to further utilize the computing resources. fgSpMSpV on the Sunway TaihuLight gains a noticeable performance improvement from the key optimization techniques with various sparsity of the input. Additionally, fgSpMSpV is implemented on an NVIDIA Tesal P100 GPU and applied to the breath-first-search (BFS) application. fgSpMSpV on a P100 GPU obtains the speedup of up to \( 134.38\times \) over the state-of-the-art SpMSpV algorithms, and the BFS application using fgSpMSpV achieves the speedup of up to \( 21.68\times \) over the state-of-the-arts.

Funder

National Key R&D Programs of China

Programs of National Natural Science Foundation of China

Programs of Hunan Province, China

Programs of China Postdoctoral Council

Program of Zhejiang Lab

General Program of Fundamental Research of Shen Zhen

Publisher

Association for Computing Machinery (ACM)

Subject

Computational Theory and Mathematics,Computer Science Applications,Hardware and Architecture,Modeling and Simulation,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3