Author:
ECELBARGER CAROLYN A.,KNEPPER MARK A.,VERBALIS JOSEPH G.
Abstract
Abstract. Hyponatremia is associated with inappropriately elevated vasopressin levels. A brisk natriuresis precedes the escape from this antidiuresis. Thus, the hypothesis was that the abundance of one or more of the sodium transporters of the distal tubule (a site for fine tuning of sodium balance) would be altered during vasopressin escape. Semiquantitative immunoblotting was used to examine the regulation of abundance of several sodium transporters/channels of the thick ascending limb through the collecting duct in the rat model. Osmotic minipumps to infuse dDAVP, the V2-selective vasopressin agonist (5 ng/h) for the entire experiment, were implanted in Male Sprague-Dawley rats. After 4 d, rats were divided into a control (dry AIN-76 diet/ad libitumwater) or a water-loaded (gelled-agar-AIN-76 diet/ad libitumwater) group. Rats were killed after 1, 2, 3, or 7 additional days. The water-loaded rats were hyponatremic (plasma Na+, 98 to 122 mmol/L) and manifested the expected early natriuresis and diuresis of vasopressin escape. Water loading (with dDAVP infusion) resulted in increased whole-kidney abundances of the thiazide-sensitive Na-Cl co-transporter, the α-subunit of the epithelial sodium channel (ENaC), and the 70-kD dimer of the γ-subunit of ENaC. No changes were observed for the β-subunit of ENaC. Similar protein changes have recently been associated with elevated aldosterone levels in rats. However, plasma aldosterone levels were significantly suppressed in this model. These data suggest that several distal sodium reabsorptive mechanisms are upregulated during vasopressin escape; this may help to attenuate the developing hyponatremia resulting from water loading when vasopressin levels are inappropriately elevated.
Publisher
American Society of Nephrology (ASN)
Subject
Nephrology,General Medicine
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献