Increased Abundance of Distal Sodium Transporters in Rat Kidney during Vasopressin Escape

Author:

ECELBARGER CAROLYN A.,KNEPPER MARK A.,VERBALIS JOSEPH G.

Abstract

Abstract. Hyponatremia is associated with inappropriately elevated vasopressin levels. A brisk natriuresis precedes the escape from this antidiuresis. Thus, the hypothesis was that the abundance of one or more of the sodium transporters of the distal tubule (a site for fine tuning of sodium balance) would be altered during vasopressin escape. Semiquantitative immunoblotting was used to examine the regulation of abundance of several sodium transporters/channels of the thick ascending limb through the collecting duct in the rat model. Osmotic minipumps to infuse dDAVP, the V2-selective vasopressin agonist (5 ng/h) for the entire experiment, were implanted in Male Sprague-Dawley rats. After 4 d, rats were divided into a control (dry AIN-76 diet/ad libitumwater) or a water-loaded (gelled-agar-AIN-76 diet/ad libitumwater) group. Rats were killed after 1, 2, 3, or 7 additional days. The water-loaded rats were hyponatremic (plasma Na+, 98 to 122 mmol/L) and manifested the expected early natriuresis and diuresis of vasopressin escape. Water loading (with dDAVP infusion) resulted in increased whole-kidney abundances of the thiazide-sensitive Na-Cl co-transporter, the α-subunit of the epithelial sodium channel (ENaC), and the 70-kD dimer of the γ-subunit of ENaC. No changes were observed for the β-subunit of ENaC. Similar protein changes have recently been associated with elevated aldosterone levels in rats. However, plasma aldosterone levels were significantly suppressed in this model. These data suggest that several distal sodium reabsorptive mechanisms are upregulated during vasopressin escape; this may help to attenuate the developing hyponatremia resulting from water loading when vasopressin levels are inappropriately elevated.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3