Cyclophosphamide-induced vasopressin-independent activation of aquaporin-2 in the rat kidney

Author:

Kim Sua1,Choi Hyo-Jung2,Jo Chor Ho1,Park Joon-Sung3,Kwon Tae-Hwan2,Kim Gheun-Ho13

Affiliation:

1. Institute of Biomedical Sciences, Hanyang University College of Medicine, Seoul, Korea;

2. Department of Biochemistry and Cell Biology, Kyungpook National University School of Medicine, Taegu, Korea; and

3. Division of Nephrology, Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea

Abstract

Because cyclophosphamide-induced hyponatremia was reported to occur without changes in plasma vasopressin in a patient with central diabetes insipidus, we hypothesized that cyclophosphamide or its active metabolite, 4-hydroperoxycyclophosphamide (4-HC), may directly dysregulate the expression of water channels or sodium transporters in the kidney. To investigate whether intrarenal mechanisms for urinary concentration are activated in vivo and in vitro by treatment with cyclophosphamide and 4-HC, respectively, we used water-loaded male Sprague-Dawley rats, primary cultured inner medullary collecting duct (IMCD) cells, and IMCD suspensions prepared from male Sprague-Dawley rats. In cyclophosphamide-treated rats, significant increases in renal expression of aquaporin-2 (AQP2) and Na-K-2Cl cotransporter type 2 (NKCC2) were shown by immunoblot analysis and immunohistochemistry. Apical translocation of AQP2 was also demonstrated by quantitative immunocytochemistry. In both rat kidney and primary cultured IMCD cells, significant increases in AQP2 and vasopressin receptor type 2 (V2R) mRNA expression were demonstrated by real-time quantitative PCR analysis. Confocal laser-scanning microscopy revealed that apical translocation of AQP2 was remarkably increased when primary cultured IMCD cells were treated with 4-HC in the absence of vasopressin stimulation. Moreover, AQP2 upregulation and cAMP accumulation in response to 4-HC were significantly reduced by tolvaptan cotreatment in primary cultured IMCD cells and IMCD suspensions, respectively. We demonstrated that, in the rat kidney, cyclophosphamide may activate V2R and induce upregulation of AQP2 in the absence of vasopressin stimulation, suggesting the possibility of drug-induced nephrogenic syndrome of inappropriate antidiuresis (NSIAD).

Funder

The Mistry of Education, Science and Technology of Korea

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3