Projecting the Impact of Multi-Cancer Early Detection on Late-Stage Incidence Using Multi-State Disease Modeling

Author:

Lange Jane M.1ORCID,Gogebakan Kemal Caglar2ORCID,Gulati Roman2ORCID,Etzioni Ruth23ORCID

Affiliation:

1. 1Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, Oregon.

2. 2Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington.

3. 3Department of Health Services, University of Washington, Seattle, Washington.

Abstract

Abstract Background: Downstaging—reduction in late-stage incidence—has been proposed as an endpoint in randomized trials of multi-cancer early detection (MCED) tests. How downstaging depends on test performance and follow-up has been studied for some cancers but is understudied for cancers without existing screening and for MCED tests that include these cancer types. Methods: We develop a model for cancer natural history that can be fit to registry incidence patterns under minimal inputs and can be estimated for solid cancers without existing screening. Fitted models are combined to project downstaging in MCED trials given sensitivity for early- and late-stage cancers. We fit models for 12 cancers using incidence data from the Surveillance, Epidemiology, and End Results program and project downstaging in a simulated trial under variable preclinical latencies and test sensitivities. Results: A proof-of-principle lung cancer model approximated downstaging in the National Lung Screening Trial. Given published stage-specific sensitivities for 12 cancers, we projected downstaging ranging from 21% to 43% across plausible preclinical latencies in a hypothetical 3-screen MCED trial. Late-stage incidence reductions manifest soon after screening begins. Downstaging increases with longer early-stage latency or higher early-stage test sensitivity. Conclusions: Even short-term MCED trials could produce substantial downstaging given adequate early-stage test sensitivity. Impact: Modeling the natural histories of cancers without existing screening facilitates analysis of novel MCED products and trial designs. The framework informs expectations of MCED impact on disease stage at diagnosis and could serve as a building block for designing trials with late-stage incidence as the primary endpoint.

Funder

Division of Cancer Prevention, National Cancer Institute

National Cancer Institute

Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University

Publisher

American Association for Cancer Research (AACR)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3