Evaluation of Land Use Land Cover Changes in Nan Province, Thailand, Using Multi-Sensor Satellite Data and Google Earth Engine

Author:

Kruasilp Jiratiwan, ,Pattanakiat Sura,Phutthai Thamarat,Vardhanabindu Poonperm,Nakmuenwai Pisut, , , ,

Abstract

Land use and land cover (LULC) conversion has become a chronic problem in Nan province. The primary factors of changes are lacking arable land, agricultural practices, and agriculture expansion. This study evaluated the usefulness of multi-sensor Landsat-5 (LS5), Landsat-8 (LS8), Sentinel-1 (S1), and Sentinel-2 (S2) satellite data for monitoring changes in LULC in Nan province, Thailand during a 30-year period (1990-2019), using a random forest (RF) model and the cloud-based Google Earth Engine (GEE) platform. Information of established land management policies was also used to describe the LULC changes. The median composite of the input variables selection from multi-sensor data were used to generate datasets. A total of 36 datasets showed the overall accuracy (OA) ranged from 51.70% to 96.95%. Sentinel-2 satellite images combined with the Modified Soil-Adjusted Vegetation Index (MSAVI) and topographic variables provided the highest OA (96.95%). Combination of optical (i.e., S2 and LS8) and S1 Synthetic Aperture Radar (SAR) data expressed better classification accuracy than individual S1 data. Forest cover decreased continuously during five consecutive periods. Coverage of maize and Pará rubber trees rapidly expanded in 2010-2014. These changes indicate an adverse consequence of the established economic development promoted by industrial and export agriculture. The findings strongly support the use of the RF technique, GEE platform and multi-sensor satellite data to enhance LULC classification accuracy in mountainous area. This study recommended that certain informative and science-based evidence will encourage local policymakers to identify priority areas for land management and natural resource conservation.

Publisher

Faculty of Environment and Resource Studies - Mahidol University

Subject

General Environmental Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3