Monitoring Agricultural Land and Land Cover Change from 2001–2021 of the Chi River Basin, Thailand Using Multi-Temporal Landsat Data Based on Google Earth Engine

Author:

Suwanlee Savittri Ratanopad1ORCID,Keawsomsee Surasak1,Pengjunsang Morakot1,Homtong Nudthawud2,Prakobya Amornchai3,Borgogno-Mondino Enrico4ORCID,Sarvia Filippo4ORCID,Som-ard Jaturong1ORCID

Affiliation:

1. Department of Geography, Faculty of Humanities and Social Sciences, Mahasarakham University, Maha Sarakham 44150, Thailand

2. Department of Geotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand

3. Geo-Informatics and Space Technology Development Agency (Public Organization), Chonburi 20230, Thailand

4. Department of Agricultural, Forest and Food Sciences, University of Turin, 10095 Torino, Italy

Abstract

In recent years, climate change has greatly affected agricultural activity, sustainability and production, making it difficult to conduct crop management and food security assessment. As a consequence, significant changes in agricultural land and land cover (LC) have occurred, mostly due to the introduction of new agricultural practices, techniques and crops. Earth Observation (EO) data, cloud-computing platforms and powerful machine learning methods can certainly support analysis within the agricultural context. Therefore, accurate and updated agricultural land and LC maps can be useful to derive valuable information for land change monitoring, trend planning, decision-making and sustainable land management. In this context, this study aims at monitoring temporal and spatial changes between 2001 and 2021 (with a four 5-year periods) within the Chi River Basin (NE–Thailand). Specifically, all available Landsat archives and the random forest (RF) classifier were jointly involved within the Google Earth Engine (GEE) platform in order to: (i) generate five different crop type maps (focusing on rice, cassava, para rubber and sugarcane classes), and (ii) monitoring the agricultural land transitions over time. For each crop map, a confusion matrix and the correspondent accuracy were computed and tested according to a validation dataset. In particular, an overall accuracy > 88% was found in all of the resulting five crop maps (for the years 2001, 2006, 2011, 2016 and 2021). Subsequently the agricultural land transitions were analyzed, and a total of 18,957 km2 were found as changed (54.5% of the area) within the 20 years (2001–2021). In particular, an increase in cassava and para rubber areas were found at the disadvantage of rice fields, probably due to two different key drivers taken over time: the agricultural policy and staple price. Finally, it is worth highlighting that such results turn out to be decisive in a challenging agricultural environment such as the Thai one. In particular, the high accuracy of the five derived crop type maps can be useful to provide spatial consistency and reliable information to support local sustainable agriculture land management, decisions of policymakers and many stakeholders.

Funder

Fast-Track Mahasarakham University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3