Mapping Irrigated Rice in Brazil Using Sentinel-2 Spectral–Temporal Metrics and Random Forest Algorithm

Author:

Fernandes Filho Alexandre S.1,Fonseca Leila M. G.12,Bendini Hugo do N.1

Affiliation:

1. Earth Observation and Geoinformatics Division, National Institute for Space Research (INPE), Avenida dos Astronautas, 1758, Jardim da Granja, Sao Jose dos Campos 12227-010, SP, Brazil

2. Brazilian Space Agency (AEB), SPO, ASA Sul, Brasília 70610-200, DF, Brazil

Abstract

Brazil, a leading rice producer globally, faces challenges in systematically mapping its diverse rice fields due to varying cropping systems, climates, and planting calendars. Existing rice mapping methods often rely on complex techniques like deep learning or microwave imagery, posing limitations for large-scale mapping. This study proposes a novel approach utilizing Sentinel-2 spectral–temporal metrics (STMs) in conjunction with a random forest classifier for rice paddy mapping. By extracting diverse STMs and training both regional and global classifiers, we validated the method across independent areas. While regional models tended to overestimate rice areas, the global model effectively reduced discrepancies between our data and the reference maps, achieving an overall classifier accuracy exceeding 80%. Despite the need for further refinement to address confusion with other crops, STM exhibits promise for national-scale rice paddy mapping in Brazil.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Reference80 articles.

1. Agência Nacional de Águas e Saneamento Básico (ANA) (2020). Mapeamento Do Arroz Irrigado No Brasil, ANA.

2. Most Consumed Foods in Brazil: Evolution between 2008–2009 and 2017–2018;Rodrigues;Rev. Saude Publica,2021

3. Sociedade Sul-Brasileira de Arroz Irrigado (2018). Arroz Irrigado: Recomendações Técnicas Da Pesquisa Para o Sul Do Brasil, Sociedade Sul-Brasileira de Arroz Irrigado.

4. RiceAtlas, a Spatial Database of Global Rice Calendars and Production;Laborte;Sci. Data,2017

5. Detailed Agricultural Land Classification in the Brazilian Cerrado Based on Phenological Information from Dense Satellite Image Time Series;Bendini;Int. J. Appl. Earth Obs. Geoinf.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3