Abstract
In a previous paper (18), G = F/Fn was studied for F a free product of a finite number of cyclic groups, and Fn the normal subgroup generated by commutators of weight n. In that paper the following cases were completely treated:(a) F a free product of cyclic groups of order pαi, p a prime, αi positive integers, and n = 4, 5, … , p + 1.(b) F a free product of cyclic groups of order 2αi, and n = 4.In this paper, the following case is completely treated:(c) F a free product of cyclic groups of order pαi p a prime, αi positive integers, and n = p + 2.(Note that n = 2 is well known, and n — 3 was studied by Golovin (2).) By ‘'completely treated” is meant: a unique representation of elements of the group is given, and the order of the group is indicated. In the case of n = 4, a multiplication table was given.
Publisher
Canadian Mathematical Society
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献