LlamaTune

Author:

Kanellis Konstantinos1,Ding Cong1,Kroth Brian2,Müller Andreas2,Curino Carlo2,Venkataraman Shivaram1

Affiliation:

1. University of Wisconsin-Madison

2. Microsoft Gray Systems Lab

Abstract

Tuning a database system to achieve optimal performance on a given workload is a long-standing problem in the database community. A number of recent works have leveraged ML-based approaches to guide the sampling of large parameter spaces (hundreds of tuning knobs) in search for high performance configurations. Looking at Microsoft production services operating millions of databases, sample efficiency emerged as a crucial requirement to use tuners on diverse workloads. This motivates our investigation in LlamaTune, a tuner design that leverages domain knowledge to improve the sample efficiency of existing optimizers. LlamaTune employs an automated dimensionality reduction technique based on randomized projections, a biased-sampling approach to handle special values for certain knobs, and knob values bucketization, to reduce the size of the search space. LlamaTune compares favorably with the state-of-the-art optimizers across a diverse set of workloads. It identifies the best performing configurations with up to 11X fewer workload runs, and reaching up to 21% higher throughput. We also show that benefits from LlamaTune generalize across both BO-based and RL-based optimizers, as well as different DBMS versions. While the journey to perform database tuning at cloud-scale remains long, LlamaTune goes a long way in making automatic DBMS tuning practical at scale.

Publisher

Association for Computing Machinery (ACM)

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Reference40 articles.

1. Apache Cassandra Documentation. 2022. https://cassandra.apache.org/doc/latest/cassandra/configuration/cass_yaml_file.html. Apache Cassandra Documentation. 2022. https://cassandra.apache.org/doc/latest/cassandra/configuration/cass_yaml_file.html.

2. CGPTuner

3. Moses Charikar , Kevin Chen , and Martin Farach-Colton . 2002. Finding frequent items in data streams . In International Colloquium on Automata, Languages, and Programming . Springer , 693--703. Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2002. Finding frequent items in data streams. In International Colloquium on Automata, Languages, and Programming. Springer, 693--703.

4. Analysis of DAWNBench, a Time-to-Accuracy Machine Learning Performance Benchmark

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Blueprinting the Cloud: Unifying and Automatically Optimizing Cloud Data Infrastructures with BRAD;Proceedings of the VLDB Endowment;2024-07

2. A Demonstration of GPTuner: A GPT-Based Manual-Reading Database Tuning System;Companion of the 2024 International Conference on Management of Data;2024-06-09

3. Nautilus: A Benchmarking Platform for DBMS Knob Tuning;Proceedings of the Eighth Workshop on Data Management for End-to-End Machine Learning;2024-06-09

4. Explainable Database Management System Configuration Tuning through Counterfactuals;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

5. Functionality-Aware Database Tuning via Multi-Task Learning;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3