CGPTuner

Author:

Cereda Stefano1,Valladares Stefano1,Cremonesi Paolo1,Doni Stefano2

Affiliation:

1. Politecnico di Milano, Milan, Italy

2. Akamas, Milan, Italy

Abstract

Properly selecting the configuration of a database management system (DBMS) is essential to increase performance and reduce costs. However, the task is astonishingly tricky due to a large number of tunable configuration parameters and their inter-dependencies. Also, the optimal configuration depends upon the workload to which the DBMS is exposed. To extract the full potential of a DBMS, we must also consider the entire IT stack on which the DBMS is running, comprising layers like the Java virtual machine, the operating system and the physical machine. Each layer offers a multitude of parameters that we should take into account. The available parameters vary as new software versions are released, making it impractical to rely on historical knowledge bases. We present a novel tuning approach for the DBMS configuration auto-tuning that quickly finds a well-performing configuration of an IT stack and adapts it to workload variations, without having to rely on a knowledge base. We evaluate the proposed approach using the Cassandra and MongoDB DBMSs, showing that it adjusts the suggested configuration to the observed workload and is portable across different IT applications. We try to minimise the memory consumption without increasing the response time, showing that the proposed approach reduces the response time and increases the memory requirements only under heavy-load conditions, reducing it again when the load decreases.

Publisher

VLDB Endowment

Subject

General Earth and Planetary Sciences,Water Science and Technology,Geography, Planning and Development

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A machine learning strategy for enhancing the strength and toughness in metal matrix composites;International Journal of Mechanical Sciences;2024-11

2. CTuner: Automatic NoSQL Database Tuning with Causal Reinforcement Learning;Proceedings of the 15th Asia-Pacific Symposium on Internetware;2024-07-24

3. The Holon Approach for Simultaneously Tuning Multiple Components in a Self-Driving Database Management System with Machine Learning via Synthesized Proto-Actions;Proceedings of the VLDB Endowment;2024-07

4. Nautilus: A Benchmarking Platform for DBMS Knob Tuning;Proceedings of the Eighth Workshop on Data Management for End-to-End Machine Learning;2024-06-09

5. ShrinkHPO: Towards Explainable Parallel Hyperparameter Optimization;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3