Blueprinting the Cloud: Unifying and Automatically Optimizing Cloud Data Infrastructures with BRAD

Author:

Yu Geoffrey X.1,Wu Ziniu1,Kossmann Ferdi1,Li Tianyu1,Markakis Markos1,Ngom Amadou1,Madden Samuel1,Kraska Tim2

Affiliation:

1. MIT CSAIL, Cambridge, MA

2. MIT CSAIL, AWS, Cambridge, MA

Abstract

Modern organizations manage their data with a wide variety of specialized cloud database engines (e.g., Aurora, BigQuery, etc.). However, designing and managing such infrastructures is hard. Developers must consider many possible designs with non-obvious performance consequences; moreover, current software abstractions tightly couple applications to specific systems (e.g., with engine-specific clients), making it difficult to change after initial deployment. A better solution would virtualize cloud data management, allowing developers to declaratively specify their workload requirements and rely on automated solutions to design and manage the physical realization. In this paper, we present a technique called blueprint planning that achieves this vision. The key idea is to project data infrastructure design decisions into a unified design space (blueprints). We then systematically search over candidate blueprints using cost-based optimization, leveraging learned models to predict the utility of a blueprint on the workload. We use this technique to build BRAD, the first cloud data virtualization system. BRAD users issue queries to a single SQL interface that can be backed by multiple cloud database services. BRAD automatically selects the most suitable engine for each query, provisions and manages resources to minimize costs, and evolves the infrastructure to adapt to workload shifts. Our evaluation shows that BRAD meet user-defined performance targets and improve cost-savings by 1.6--13× compared to serverless auto-scaling or HTAP systems.

Publisher

Association for Computing Machinery (ACM)

Reference115 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3